
32076A–AVR32–11/07

32-bit

Microcontrollers

Application Note
AVR32718: AT32UC3 Series Software Framework
DSPLib

1. Introduction
This application note describes the DSP Library from the AVR32® Software Frame-

work. It details the main functions (prototype, algorithm and benchmark) of the DSP

library: FFT, convolution, FIR and partial IIR using GCC compiler.

All the source code (C code and assembly), software example and GCC and IAR

projects are released in the AVR32 UC3 Software Framework.

1.1 References

• AVR32 UC3 Software Framework: This framework provides software drivers,

libraries and application examples to build any application for AVR32 UC3.

devices.http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

• AVR32 Architecture Manual:

http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

2. Radix-4 decimate in time complex FFT

2.1 Description

This function computes a complex FFT from an input signal. It uses the Radix-4 “Decimate In

Time” algorithm and does not perform a calculation “in place” which means that the input buffer

has to be different from the output buffer.Function prototype

void dspXX_trans_complexfft(

dspXX_complex_t *vect1,

dspXX_t *vect2,

int nlog);

where XX corresponds to the number of bits of a basic data element (i.e. 16 or 32).

2.1.1 Arguments

This function takes three parameters: the output buffer, the input buffer and a value correspond-

ing to the size of those buffers.

The output buffer (vect1) is a pointer on a complex vector of 2^nlog elements.

The input buffer (vect2) is a pointer on a real vector of 2^nlog elements.

The size argument (nlog) is in fact the base-2-logarithm of the size of the input vector. (nlog fits

in [2, 4, 6, …, 28])

2.1.2 Algorithm

Following is the algorithm used to implement the radix-4 DIT complex FFT. The optimized ver-

sion is based on this algorithm but can differ in certain points due to the instruction set of the

target:

size = 1 << nlog

FOR r FROM 0 TO size-1 STEP 4 DO

Butterfly_zero_only_real_and_bit_reversing(vect1, vect2, r)

END

FOR stage FROM 1 TO nlog/2 DO

m = 4 ^ stage

FOR r FROM 0 TO size-1 STEP m DO

Butterfly_zero(vect1, r)

END

FOR j FROM 1 TO m / 4 - 1 DO

Comput_twiddle_factors(e, e2, e3, j / m)

FOR r FROM 0 TO size-1 STEP m DO

Butterfly(vect1, r, j, e, e2, e3)

END

END

END
2

32076A–AVR32–11/07

AVR32718

AVR32718
2.1.3 Notes

Interruptibility: the code is interruptible.

In-place computation is not allowed.

This function uses a static twiddle factors table raw-coded in the file “BASIC/TRANS-

FORMS/dspXX_twiddle_factors.h”. To generate those factors, you can use the script called

“tf_gen.sci” and execute it with Scilab.

To avoid overflowing values, the resulting vector amplitude is scaled by 2^nlog.

All the vectors have to be 32-bit aligned.

2.2 Benchmark

2.2.1 Benchmark routine

All these functions have been benchmarked on an avr32-uc3a0512 target. The programs have

been compiled with avr32-gcc (4.0.2-atmel.1.0.0) with the –O3 optimization option and have

been stored in FLASH memory. The fixed-point format used is the Q1.15 format for the 16-bit

data and the Q1.31 format for the 32-bit data.

The benchmark process has been performed with the same input signal for all those functions

and compared with a reference’s signal computed with a mathematic tool using floating point.

The input signal is a combination of one sine and one cosine. The sine oscillating at 400Hz and

the cosine at 2KHz. Those signals have been multiplied and sampled at 40KHz.

2.2.2 Result

Here are tables of the main values of the benchmark results. All those values correspond to the

best performances of the functions and are obtained with different compilation options. For more

information, please refer to the complete benchmark result table in annexes.

Input signal

>
Complex

FFT

Signal resulting and formatted (FFT)

3

32076A–AVR32–11/07

2.2.2.1 16-bit radix-4 D.I.T. complex FFT: generic

Concerned file path: /BASIC/TRANSFORMS/dsp16_complex_fft_generic.c

More details on Table 1.1.1 in annexes

2.2.2.2 16-bit radix-4 D.I.T. complex FFT: avr32-uc3 optimized

Concerned file path: /BASIC/TRANSFORMS/dsp16_complex_fft_avr32uc3.c

Warning: this function is only compatible with Q1.15 numbers.

Note: this function needs 72 bytes of memory for the stack.

More details on Table 1.1.2 in annexes

2.2.2.3 32-bit radix-4 D.I.T. complex FFT: generic

Concerned file path: /BASIC/TRANSFORMS/dsp32_complex_fft_generic.c

More details on Table 1.2.1 in annexes

Lowest cycle count

Fastest computation

at 60 MHz

Lowest Error

Lowest Algorithm’s size

in memory

Amplitude

average Max. amplitude

64-points 6,296 108.2us 1.58e-5 6.53e-5 1.1 Kbytes

256-points 33,723 578.0us 1.69e-5 8.80e-5 1.3 Kbytes

1024-points 169,006 2.90ms 1.67e-5 12.31e-4 2.0 Kbytes

4096-points 812,321 13.90ms 1.52e-5 14.60e-4 5.0 Kbytes

Lowest cycle count

Fastest computation

at 60 MHz

Lowest Error

Lowest Algorithm’s size

in memory

Amplitude

average Max. amplitude

64-points 2,611 44.4 us 1.63e-5 6.53e-5 710 bytes

256-points 13,661 232.2 us 1.68e-5 7.46e-5 902 bytes

1024-points 67,671 1.15 ms 1.69e-5 1.02e-4 1.6 Kbytes

4096-points 322,897 5.49 ms 1.58e-5 1.18e-4 4.6 Kbytes

Lowest cycle count

Fastest computation

at 60 MHz

Lowest Error

Lowest Algorithm’s size

in memory

Amplitude

average Max. amplitude

64-points 13,206 225.2us 6.0e-10 5.7e-9 2.0 Kbytes

256-points 74,297 1.27us 3.0e-10 4.8e-9 2.4 Kbytes

1024-points 383,212 6.53ms 3.0e-10 6.1e-9 3.9 Kbytes
4

32076A–AVR32–11/07

AVR32718

AVR32718
3. Convolution

3.1 Description

This function performs a linear convolution between two discrete sequences.

3.1.1 Function prototype

void dspXX_vect_conv(

dspXX_t *vect1,

dspXX_t *vect2,

int vect2_size,

dspXX_t *vect3,

int vect3_size);

 where XX corresponds to the number of bits of a basic data element (i.e. 16 or 32).

3.1.2 Arguments

This function takes five parameters: the output buffer, the two discrete sequences and their

respective sizes.

• The output buffer (vect1) is a pointer on a real vector of (vect2_size + vect3_size - 1)

elements.

• The first input buffer (vect2) is a pointer on a real vector of vect2_size elements.

• The first size argument (vect2_size) is the length of the first input buffer (vect2_size [8, 9,

10, …]).

• The second input buffer (vect3) is a pointer on a real vector of vect3_size elements.

• The second size argument (vect3_size) is the length of the second input buffer (vect3_size

fits in [8, 9, 10, …]).

3.1.3 Requirements

This function requires 3 modules:

The output buffer of the function has to have at least a length of N + 2*M – 2 ele-

ments because of intern computations, where N is the length of the largest input buffer and M,

the length of the smallest input buffer.

∈

Module name Function name Concerned file path

Zero Padding dspXX_vect_zeropad /BASIC/VECTORS/zero_padding.c

Copy dspXX_vect_copy /BASIC/VECTORS/copy.c

Partial Convolution dspXX_vect_convpart /BASIC/VECTORS/convolution_partial.c
5

32076A–AVR32–11/07

3.1.4 Algorithm

Following is the algorithm used to implement the convolution product. The optimized version is

based on this algorithm but can differ in certain points due to the instruction set of the target:

IF vect2_size >= vect3_size THEN

Partial_convolution(vect1, vect1, vect2_size + 2*(vect3_size – 1), vect3, vect3_size)

ELSE

Partial_convolution(vect1, vect1, vect3_size + 2*(vect2_size – 1), vect2, vect2_size)

END

3.1.5 Notes

• Interruptibility: the code is interruptible.

• Due to its implementation, the dsp16-avr32-uc3 optimized version of the FIR requires a

length of 4*m elements for the largest input discrete sequence and the output buffer (vect1)

has to have a length of 4*n elements to avoid overflows.

• The input discrete sequences have to be scaled to avoid overflowing values.

• All the vectors have to be 32-bit aligned.

3.2 Benchmark

3.2.1 Benchmark routine

All these functions have been benchmarked on an avr32-uc3a0512 target. The programs have

been compiled with avr32-gcc (4.1.2-atmel.1.0.0) with the –O3 optimization option and have

been stored in FLASH memory. The fixed-point format used is the Q1.15 format for the 16-bit

data and the Q1.31 format for the 32-bit data.

The benchmark process has been performed with the same input signal and impulse response

for all those functions and compared with a reference’s signal computed with a mathematic tool

using floating point.

The first input signal is a sine oscillating at 433Hz and the second input signal is a cosine

oscillating at 2KHz. Those signals are sampled at 40KHz.

vect1 = 0 0 0 0 … 0 0 0 0 vect2 0 0 0 0 … 0 0 0 0

vect3_size – 1 vect2_size vect3_size – 1

vect1 = 0 0 0 0 … 0 0 0 0 vect3 0 0 0 0 … 0 0 0 0

vect2_size – 1 vect3_size vect2_size – 1
6

32076A–AVR32–11/07

AVR32718

AVR32718
3.2.2 Result

Here are tables of the main values of the benchmark results. All those values correspond to the

best performances of the functions and are obtained with different compilation options. For more

information, please refer to the complete benchmark result table in annexes.

Concerned file path: /BASIC/VECTORS/convolution.c

3.2.2.1 16-bit Convolution: generic

Algorithm’s size in memory: 2.2 Kbytes.

Length of the first input signal: 64 elements.

More details on Table 2.1.1 in annexes

1

st
 input signal

2

nd
 input signal

>
FIR filter

Resulting signal

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

32-points 23,524 408.5us 2.0e-5 4.5e-5

64-points 57,757 1.00ms 1.8e-5 4.7e-5

128-points 86,752 1.50ms 1.8e-5 4.4e-5

256-points 144,736 2.51ms 1.5e-5 4.8e-5
7

32076A–AVR32–11/07

3.2.2.2 16-bit Convolution: avr32-uc3 optimized

Algorithm’s size in memory: 950 bytes.

Length of the first input signal: 64 elements.

More details on Table 2.1.2 in annexes

3.2.2.3 32-bit Convolution: generic

Algorithm’s size in memory: 3.3 Kbytes.

Length of the first input signal: 64 elements.

More details on Table 2.2.1 in annexes

3.2.2.4 32-bit Convolution: avr32-uc3 optimized

Algorithm’s size in memory: 1.5 Kbytes.

Length of the first input signal: 64 elements.

More details on Table 2.2.2 in annexes

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

32-points 8,248 151.2us 2.0e-5 4.5e-5

64-points 19,087 349.1us 1.8e-5 4.7e-5

128-points 28,532 521.8us 1.8e-5 4.4e-5

256-points 47,412 866.9us 1.5e-5 4.8e-5

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

32-points 42,572 729.8us 0.4e-9 2.1e-9

64-points 109,179 1.87ms 0.4e-9 1.7e-9

128-points 163,968 2.81ms 0.5e-9 1.6e-9

256-points 273,536 4.69ms 0.6e-9 2.7e-9

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

32-points 19,958 340.2us 0.5e-9 2.1e-9

64-points 50,501 860.4us 0.5e-9 1.7e-9

128-points 75,722 1.29ms 0.6e-9 2.4e-9

256-points 126,154 2.15ms 0.7e-9 2.7e-9
8

32076A–AVR32–11/07

AVR32718

AVR32718
4. FIR Filter (alias Partial Convolution)

4.1 Description

This function computes a real FIR filter using the impulse response of the desire filter onto a

fixed-length signal.

4.1.1 Function prototype

where XX corresponds to the number of bits of a basic data element (i.e. 16 or 32).

4.1.2 Arguments

This function takes five parameters: the output buffer, the input buffer, its size, the impulse

response of the filter and its size.

The output buffer (vect1) is a pointer on a real vector of (size - h_size + 1) elements.

The input buffer (vect2) is a pointer on a real vector of size elements.

The size argument (size) is the length of the input buffer (size fits in [4, 8, 12, …]).

The impulse response of the filter (h) is a pointer on a real vector of h_size elements.

The size argument (h_size) is the length of the impulse response of the filter (h_size fits in [8, 9,

10, …]).

4.1.3 Requirements

This function requires one module:

void dspXX_filt_fir(

dspXX_t *vect1,

dspXX_t *vect2,

int size,

dspXX_t *h,

int h_size);

void dspXX_vect_convpart(

dspXX_t *vect1,

dspXX_t *vect2,

int vect2_size,

dspXX_t *vect3,

int vect3_size);

Module name Function name Concerned file path

Partial Convolution dspXX_vect_convpart /BASIC/VECTORS/convolution_partial.c
9

32076A–AVR32–11/07

4.1.4 Algorithm

Following is the algorithm used to implement the FIR filter. The optimized version is based on

this algorithm but can differ in certain points due to the instruction set of the target:

FOR j FROM 0 TO size - h_size + 1 DO

sum = 0

FOR i FROM 0 TO h_size DO

sum += vect2[i] * h[h_size - i - 1]

END

vect1[j] = sum >> DSPXX_QB

END

4.1.5 Notes

• Interruptibility: the code is interruptible.

• Due to its implementation, for the dsp16-avr32-uc3 optimized version of the FIR, the output

buffer (vect1) has to have a length of 4*n elements to avoid overflows.

• The impulse response of the filter has to be scaled to avoid overflowing values.

• All the vectors have to be 32-bit aligned.

4.2 Benchmark

4.2.1 Benchmark routine

All these functions have been benchmarked on an avr32-uc3a0512 target. The programs have

been compiled with avr32-gcc (4.1.2-atmel.1.0.0) with the –O3 optimization option and have

been stored in FLASH memory. The fixed-point format used is the Q1.15 format for the 16-bit

data and the Q1.31 format for the 32-bit data.

The benchmark process has been performed with the same input signal and impulse response

for all those functions and compared with a reference’s signal computed with a mathematic tool

using floating point.

The input signal is a combination of one sine and one cosine. The sine oscillating at 400Hz and

the cosine at 2KHz. Those signals have been multiplied and sampled at 40KHz.

The impulse response describes a low-pass filter with a cutoff frequency equal to 400Hz.
10

32076A–AVR32–11/07

AVR32718

AVR32718
4.2.2 Result

Here are tables of the main values of the benchmark results. All those values correspond to the

best performances of the functions and are obtained with different compilation options. For more

information, please refer to the complete benchmark result table in annexes.

4.2.2.1 16-bit FIR filter: generic

Concerned file path: /BASIC/VECTORS/dsp16_convpart_generic.c

Algorithm’s size in memory: 2.0 Kbytes.

Number of Taps: 24.

More details on Table 3.1.1 in annexes

4.2.2.2 16-bit FIR filter: avr32-uc3 optimized

Concerned file path: /BASIC/VECTORS/dsp16_convpart_avr32uc3.c

Algorithm’s size in memory: 770 bytes.

Number of Taps: 24.

More details on Table 3.1.2 in annexes

Input signal

Impulse response of the filter

>
FIR filter

Resulting signal

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

64-points 7,424 128.0us 2.27e-5 9.46e-5

256-points 41,793 720.0us 2.22e-5 9.46e-5

512-points 87,617 1.51ms 2.23e-5 9.46e-5

1024-points 179,265 3.09ms 2.21e-5 9.46e-5

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

64-points 2,439 44.3us 2.27e-5 9.46e-5

256-points 12,712 230.7us 2.22e-5 9.46e-5

512-points 26,408 479.2us 2.23e-5 9.46e-5

1024-points 53,800 976.3us 2.21e-5 9.46e-5
11

32076A–AVR32–11/07

4.2.2.3 32-bit FIR filter: generic

Concerned file path: /BASIC/VECTORS/dsp32_convpart_generic.c

Algorithm’s size in memory: 3.1 Kbytes.

Number of Taps: 24.

More details on Table 3.2.1 in annexes

4.2.2.4 32-bit FIR filter: avr32-uc3 optimized

Concerned file path: /BASIC/VECTORS/dsp32_convpart_avr32uc3.c

Algorithm’s size in memory: 1.3 Kbytes.

Number of Taps: 24.

More details on Table 3.2.2 in annexes

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

64-points 13,984 239.4us 2.1e-9 1.24e-8

256-points 79,073 1.35ms 2.3e-9 1.74e-8

512-points 165,857 2.84ms 2.6e-9 2.31e-8

1024-points 339,425 5.81ms 3.7e-9 2.84e-8

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

64-points 6,479 110.2us 2.1e-9 1.24e-8

256-points 36,432 619.0us 2.3e-9 1.24e-8

512-points 76,368 1.30ms 2.6e-9 2.31e-8

1024-points 156,240 2.65ms 3.7e-9 2.84e-8
12

32076A–AVR32–11/07

AVR32718

AVR32718
5. Partial IIR Filter

5.1 Description

This function computes a real IIR filter using the impulse response of the desire filter onto a

fixed-length signal.

5.1.1 Function prototype

where XX corresponds to the number of bits of a basic data element (i.e. 16 or 32).

5.1.2 Arguments

This function takes five parameters: the output buffer, the input buffer, its size, the coefficients of

the filter, theirs sizes and a coefficient’s predivisor.

The output buffer (vect1) is a pointer on a real vector of (size - num_size + 1) elements.

The input buffer (vect2) is a pointer on a real vector of size elements.

The size argument (size) is the length of the input buffer (size fits in [4, 5, 6, 7, …]).

The numerator’s coefficients argument of the filter (num) is a pointer on a real vector of

num_size elements.

The size argument (num_size) is the length of the numerator’s coefficients of the filter (num_size

fits in [1, 2, 3, …]).

The denominator’s coefficients argument of the filter (den) is a pointer on a real vector of

den_size elements.

The size argument (den_size) is the length of the denominator’s coefficients of the filter

(den_size fits in [1, 2, 3, …]).

The predivisors (num_prediv and den_prediv) are used to scale down the denominator/numera-

tor’s coefficients of the filter in order to avoid overflow values. So when you use this feature, you

have to prescale manually the denominator/numerator’s coefficients by 2^prediv else leave this

field to 0.

void dspXX_filt_iir(

dspXX_t *vect1,

dspXX_t *vect2,

int size,

dspXX_t *num,

int num_size,

dspXX_t *den,

int den_size,

int num_prediv,

int den_prediv);
13

32076A–AVR32–11/07

5.1.3 Algorithm

Following is the algorithm used to implement the IIR filter. The optimized version is based on this

algorithm but can differ in certain points due to the instruction set of the target:

// Initialization of the vect1 coefficients

FOR n FROM 0 TO den_size - 1 DO

sum1 = 0

FOR m FROM 0 TO num_size - 1 DO

sum1 += num[m] * vect2[n + num_size - m - 1]

END

sum2 = 0

FOR m FROM 1 TO n DO

sum2 += den[m] * vect1[n - m]

END

vect1[n] = (sum1 – (sum2 << prediv)) >> DSPXX_QB

END

FOR n FROM n TO size – num_size DO

sum1 = 0

FOR m FROM 0 TO num_size - 1 DO

sum1 += num[m] * vect2[n + num_size - m - 1]

END

sum2 = 0

FOR m FROM 1 TO den_size - 1 DO

sum2 += den[m] * vect1[n - m]

END

vect1[n] = (sum1 – (sum2 << prediv)) >> DSPXX_QB

END

5.1.4 Notes

• Interruptibility: the code is interruptible.

• Due to its implementation, for the dsp16-avr32-uc3 optimized version of the FIR, the output

buffer (vect1) has to have a length of 4*n elements to avoid overflows.

• The impulse response of the filter has to be scaled to avoid overflowing values.

• All the vectors have to be 32-bit aligned.

• The first denominator’s coefficient have to be equal to 1 / (2^prediv).

• The predivisor (prediv) must be lower or equals to the constant DSPXX_QB.
14

32076A–AVR32–11/07

AVR32718

AVR32718
5.2 Benchmark

5.2.1 Benchmark routine

All these functions have been benchmarked on an avr32-uc3a0512 target. The programs have

been compiled with avr32-gcc (4.1.2-atmel.1.0.0) with the –O3 optimization option and have

been stored in FLASH memory. The fixed-point format used is the Q1.15 format for the 16-bit

data and the Q1.31 format for the 32-bit data.

The benchmark process has been performed with the same input signal and impulse response

for all those functions and compared with a reference’s signal computed with a mathematic tool

using floating point.

The input signal is a combination of one sine and one cosine. The sine oscillating at 400Hz and

the cosine at 4KHz. Those signals have been added together and sampled at 8KHz.

The filter used is a low-pass Butterworth filter with a cutoff frequency equal to 2KHz.
15

32076A–AVR32–11/07

5.2.2 Result

Here are tables of the main values of the benchmark results. All those values correspond to the

best performances of the functions and are obtained with different compilation options. For more

information, please refer to the complete benchmark result table in annexes.

5.2.2.1 16-bit IIR filter: generic

Concerned file path: /BASIC/FILTERING/dsp16_iir_generic.c

Algorithm’s size in memory: 266 bytes.

Order of the filter: 7

More details on Table 4.1.1 in annexes

5.2.2.2 16-bit IIR filter: avr32-uc3 optimized

Concerned file path: /BASIC/FILTERING/dsp16_iir_avr32uc3.c

Algorithm’s size in memory: 1.0 Kbytes (size optimization), 3.1 Kbytes (speed optimization).

Order of the filter: 7

More details on Table 4.1.2 in annexes

5.2.2.3 32-bit IIR filter: generic

Concerned file path: /BASIC/FILTERING/dsp32_iir_generic.c

Algorithm’s size in memory: 400 bytes.

Order of the filter: 7

More details on Table 4.2.1 in annexes

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

72-points 11,469 213.4us 1.40e-5 4.30e-5

256-points 44,591 829.8us 1.40e-5 4.30e-5

512-points 90,671 1.69ms 1.40e-5 4.30e-5

1024-points 182,831 3.40ms 1.40e-5 4.30e-5

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

72-points 4,332 78.0us 1.90e-5 6.90e-5

256-points 15,006 270.5us 1.70e-5 6.90e-5

512-points 29,854 538.2us 1.70e-5 6.90e-5

1024-points 59,550 1.07ms 1.70e-5 6.90e-5

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

72-points 14,517 265.4us 1.50e-9 7.00e-9

256-points 56,471 1.03ms 1.50e-9 7.00e-9

512-points 114,839 2.10ms 1.50e-9 7.00e-9

1024-points 231,575 4.23ms 1.50e-9 7.00e-9
16

32076A–AVR32–11/07

AVR32718

AVR32718
5.2.2.4 32-bit IIR filter: avr32-uc3 optimized

Concerned file path: /BASIC/FILTERING/dsp32_iir_avr32uc3.c

Algorithm’s size in memory: 3.0 Kbytes.

Order of the filter: 7

More details on Table 4.2.2 in annexes

Benchmark results for the 16-bit version (with speed optimization)

The benchmark has been performed on a 72-element input signal.

Lowest cycle

count

Fastest computation at 60

MHz

Lowest Error

Amplitude average Max. amplitude

72-points 8,859 153.9us 1.50e-9 7.00e-9

256-points 33,333 577.1us 1.50e-9 7.00e-9

512-points 67,381 1.17ms 1.60e-9 7.00e-9

1024-points 135,477 2.34ms 1.60e-9 7.00e-9

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19

Number of coefficients

C
y
c
le

s

avr32-uc3 optimized

generic
17

32076A–AVR32–11/07

Benchmark results for the 32-bit version (with speed optimization)

The benchmark has been performed on a 72-element input signal.

Remark: the number of coefficients corresponds to a filter which order is equal to “Number of

coefficients” – 1.

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19

Number of coefficients

C
y
c
le

s
avr32uc3 optimized

generic
18

32076A–AVR32–11/07

AVR32718

AVR32718
6. Annexes

*: Twiddle Factors Table.

(0): Algorithmic optimized for speed.

(1): Algorithmic optimized for accuracy.

(2): Algorithmic optimized for size.

(3): Algorithmic optimized for size and accuracy.

Table 1.1.1 - Benchmark of 16-bit Radix-4 D.I.T. complex FFT: generic

O
p

ti
m

iz
a

ti
o

n

T.F.T.* in SRAM (cycles) T.F.T.* in FLASH (cycles)

Error

Algorithm’s size in

memory (bytes)

(code size + T.F.T.*

size)

Ampl i -

tude

average

(x10-5)

Max .

ampl i -

t ude

(x10-5)
wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point

(0) 6,296 (209.9us) 6,489 (108.2us) 6,640 (221.3us) 7,012 (116.9us) 2.98 15.63 1K (840 + 194)

(1) 6,343 (211.4us) 6,538 (109.0us) 6,777 (225.9us) 7,167 (119.5us) 1.58 6.53 1K (844 + 194)

(2) 6,666 (222.2us) 6,959 (116.0us) 7,092 (236.4us) 7,546 (125.8us) 2.98 15.63 1.1K (1032 + 66)

(3) 6,747 (224.9us) 6,996 (116.6us) 7,101 (236.7us) 7,536 (125.6us) 1.58 6.53 1K (984 + 66)

256-point

(0) 33,723 (1124.1us) 34,682 (578.0us) 35,265 (1175.5us) 37,033 (617.2us) 3.02 21.92 1.6K (840 + 770)

(1) 34,041 (1134.7us) 35,003 (583.4us) 35,988 (1199.6us) 37,836 (630.6us) 1.69 8.80 1.6K (844 + 770)

(2) 35,304 (1176.8us) 36,675 (611.3us) 37,194 (1239.8us) 39,294 (654.9us) 3.02 21.92 1.3K (1032 + 258)

(3) 35,,826 (1194.2us) 37,032 (617.2us) 37,419 (1247.3us) 39,453 (657.6us) 1.69 8.80 1.2K (984 + 258)

1024-point

(0) 169,006 (5.63ms) 173,611 (2.90ms) 175,394 (5.85ms) 183,358 (3.06ms) 3.04 25.01 3.8K (840 + 3K)

(1) 170,795 (5.69ms) 175,404 (2.92ms) 178,863 (5.96ms) 187,161 (3.12ms) 1.67 12.31 3.8K (844 + 3K)

(2) 175,446 (5.85ms) 181,703 (3.03ms) 183,248 (6.11ms) 192,530 (3.21ms) 3.04 25.01 2K (1032 + 1K)

(3) 178,153 (5.94ms) 183,772 (3.06ms) 184,761 (6.16ms) 193,802 (3.23ms) 1.67 12.31 2K (984 + 1K)

4096-point

(0) 812,321 (27.08ms) 833,820 (13.90ms) 838,147 (27.94ms) 873,235 (14.55ms) 3.09 32.90 12.8K (840 + 12K)

(1) 821,533 (27.38ms) 843,037 (14.05ms) 854,154 (28.47ms) 890,598 (14.84ms) 1.52 14.60 12.8K (844 + 12K)

(2) 838,212 (27.94ms) 866,315 (14.44ms) 869,718 (28.99ms) 910,054 (15.17ms) 3.09 32.90 5K (1032 + 4K)

(3) 851,232 (28.37ms) 876,816 (14.61ms) 877,959 (29.27ms) 917,367 (15.29ms) 1.52 14.60 5K (984 + 4K)
19

32076A–AVR32–11/07

*: Twiddle Factors Table.

(0): Algorithmic optimized for speed.

(1): Algorithmic optimized for accuracy.

(2): Algorithmic optimized for size.

(3): Algorithmic optimized for size and accuracy.

Table 1.1.2 - Benchmark of 16-bit Radix-4 D.I.T. complex FFT: avr32-uc3 optimized

O
p

ti
m

iz
a

ti
o

n

T.F.T.* in SRAM (cycles) T.F.T.* in FLASH (cycles)

Error

Algorithm’s size in

memory (bytes)

(code size + T.F.T.*

size)

Amplitude

average

(x10-5)

Max.

amplitude

(x10-5)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point

(0) 2,611 (87.0us) 2,661 (44.4us) 2,753 (91.8us) 2,877 (48.0us) 3.00 10.04 894 (700 + 194)

(1) 2,951 (98.4us) 2,999 (50.0us) 3,097 (103.2us) 3,265 (54.4us) 1.63 6.53 774 (580 + 194)

(2) 2,833 (94.4us) 2,912 (48.5us) 3,027 (100.9us) 3,221 (53.7us) 2.93 10.04 710 (644 + 66)

(3) 3,206 (106.9us) 3,311 (55.2us) 3,458 (115.3us) 3,683 (61.4us) 1.63 6.53 766 (700 + 66)

256-point

(0) 13,661 (455.4us) 13,932 (232.2us) 14,306 (476.9us) 14,904 (248.4us) 2.78 13.86 1.4K (700 + 770)

(1) 15,777 (525.9us) 16,033 (267.2us) 16,428 (547.6us) 17,242 (287.4us) 1.68 7.46 1.3K (580 + 770)

(2) 14,651 (488.4us) 15,056 (250.9us) 15,527 (517.6us) 16,442 (274.0us) 2.87 15.82 902 (644 + 258)

(3) 16,916 (563.9us) 17,469 (291.2us) 18,041 (601.4us) 19,152 (319.2us) 1.68 7.46 958 (700 + 258)

1024-point

(0) 67,671 (2.26ms) 69,027 (1.15ms) 70,355 (2.35ms) 73,059 (1.22ms) 2.84 19.33 3.7K (700 + 3K)

(1) 79,195 (2.64ms) 80,475 (1.34ms) 81,887 (2.73ms) 85,507 (1.43ms) 1.69 10.23 3.6K (580 + 3K)

(2) 71,765 (2.39ms) 73,680 (1.23ms) 75,403 (2.51ms) 79,423 (1.32ms) 2.86 19.33 1.6K (644 + 1K)

(3) 83,906 (2.80ms) 86,635 (1.44ms) 88,560 (2.95ms) 93,629 (1.56ms) 1.69 10.23 1.7K (700 + 1K)

4096-point

(0) 322,897 (10.76ms) 329,370 (5.49ms) 333,764 (11.13ms) 345,678 (5.76ms) 2.80 23.69 12.7K (700 + 12K)

(1) 381,269 (12.71ms) 387,413 (6.46ms) 392,146 (13.07ms) 407,788 (6.80ms) 1.58 11.84 12.6K (580 + 12K)

(2) 339,439 (11.31ms) 348,176 (5.80ms) 354,159 (11.81ms) 371,396 (6.19ms) 2.81 23.69 4.6K (644 + 4K)

(3) 400,304 (13.34ms) 413,273 (6.89ms) 419,111 (13.97ms) 441,578 (7.36ms) 1.58 11.84 4.7K (700 + 4K)
20

32076A–AVR32–11/07

AVR32718

AVR32718
*: Twiddle Factors Table.

(0): Algorithmic optimized for speed.

(1): Algorithmic optimized for accuracy.

(2): Algorithmic optimized for size.

(3): Algorithmic optimized for size and accuracy.

Table 1.2.1 - Benchmark of 32-bit Radix-4 D.I.T. complex FFT: generic

O
p

ti
m

iz
a

ti
o

n

T.F.T.* in SRAM (cycles) T.F.T.* in FLASH (cycles)

Error

Algorithm’s size in

memory (bytes)

(code size + T.F.T.*

size)

Amplitude

average

(x10-9)

Max.

amplitude

(x10-9)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point

(0) 13,206 (440.2us) 13,509 (225.2us) 13,580 (452.7us) 14,063 (234.4us) 0.70 5.70 2.2K (1816 + 392)

(1) 15,323 (510.8us) 15,659 (261.0us) 15,627 (520.9us) 16,113 (268.6us) 0.60 5.70 2.4K (2112 + 392)

(2) 13,622 (454.1us) 14,011 (233.5us) 13,938 (464.6us) 14,497 (241.6us) 0.70 5.70 2.0K (1952 + 136)

(3) 15,714 (523.8us) 16,245 (270.8us) 16,058 (535.3us) 16,805 (280.1us) 0.60 5.70 2.3K (2248 + 136)

256-point

(0) 74,297 (2.48ms) 75,940 (1.27ms) 75,992 (2.53ms) 78,445 (1.31ms) 0.50 4.80 3.3K (1816 + 1.5K)

(1) 87,791 (2.93ms) 89,605 (1.49ms) 89,165 (2.97ms) 91,636 (1.53ms) 0.30 4.80 3.6K (2112 + 1.5K)

(2) 76,136 (2.54ms) 78,160 (1.30ms) 77,537 (2.58ms) 80,329 (1.34ms) 0.50 4.80 2.4K (1952 + 520)

(3) 89,543 (2.98ms) 92,446 (1.54ms) 91,058 (3.04ms) 94,978 (1.59ms) 0.30 4.80 2.7K (2248 + 520)

1024-point

(0) 383,212 (12.77ms) 391,715 (6.53ms) 390,260 (13.01ms) 402,123 (6.70ms) 0.50 8.80 7.8K (1816 + 6K)

(1) 457,571 (15.25ms) 466,815 (7.78ms) 463,279 (15.44ms) 475,223 (7.92ms) 0.30 6.10 8.1K (2112 + 6K)

(2) 390,794 (13.03ms) 400,869 (6.68ms) 396,576 (13.22ms) 409,841 (6.83ms) 0.50 8.80 3.9K (1952 + 2K)

(3) 464,988 (15.50ms) 479,847 (8.00ms) 471,226 (15.71ms) 490,367 (8.17ms) 0.30 6.10 4.2K (2248 + 2K)

Table 2.1.1 - Benchmark of 16-bit Convolution: generic

1st input signal 2nd input signal

Execution time (cycles)

Error

Amplitude average

(x10-5)

Max. amplitude

(x10-5)

wait-state

0 at 30MHz 1 at 60MHz

32-point

32-points 15,681 (522.7us) 16,344 (272.4us) 1.60 3.90

64-points 23,524 (784.1us) 24,508 (408.5us) 2.00 4.50

128-points 39,204 (1.31ms) 40,830 (680.5us) 1.90 4.50

256-points 70,564 (2.35ms) 73,470 (1.22ms) 1.70 4.10

64-point

64-points 57,757 (1.93ms) 60,084 (1.00ms) 1.80 4.70

128-points 86,752 (2.89ms) 90,234 (1.50ms) 1.80 4.40

256-points 144,736 (4.82ms) 150,522 (2.51ms) 1.50 4.80

128-point
128-points 221,780 (7.39ms) 230,512 (3.84ms) 1.80 5.30

256-points 333,018 (11.10ms) 346,097 (5.77ms) 1.70 5.00

256-point 256-points 869,316 (28.98ms) 903,136 (15.05ms) 1.70 5.40
21

32076A–AVR32–11/07

Table 2.1.2 - Benchmark of 16-bit Convolution: avr32-uc3 optimized

1st input signal 2nd input signal

Execution time (cycles)

Error

Amplitude average

(x10-5)

Max. amplitude

(x10-5)

wait-state

0 at 30MHz 1 at 60MHz

32-point

32-points 5,571 (185.7us) 6,127 (102.1us) 1.60 3.90

64-points 8,248 (274.9us) 9,070 (151.2us) 2.00 4.50

128-points 13,592 (453.1us) 14,944 (249.1us) 1.90 4.50

256-points 24,280 (809.3us) 26,688 (444.8us) 1.70 4.10

64-point

64-points 19,087 (636.2us) 20,947 (349.1us) 1.80 4.70

128-points 28,532 (951.1us) 31,308 (521.8us) 1.80 4.40

256-points 47,412 (1.58ms) 52,012 (866.9us) 1.50 4.80

128-point
128-points 70,694 (2.36ms) 77,471 (1.29ms) 1.80 5.30

256-points 105,966 (3.53ms) 116,099 (1.93ms) 1.70 5.00

256-point 256-points 272,214 (9.07ms) 298,031 (4.97ms) 1.70 5.40

Table 2.2.1 - Benchmark of 32-bit Convolution: generic

1st input signal 2nd input signal

Execution time (cycles)

Error

Amplitude average

(x10-9)

Max. amplitude

(x10-9)

wait-state

0 at 30MHz 1 at 60MHz

32-point

32-points 28,359 (945.3us) 29,182 (486.4us) 0.40 1.60

64-points 42,572 (1.42ms) 43,788 (729.8us) 0.40 2.10

128-points 70,988 (2.37ms) 72,990 (1.22ms) 0.30 1.90

256-points 127,820 (4.26ms) 131,390 (2.19ms) 0.40 1.70

64-point

64-points 109,179 (3.64ms) 112,334 (1.87ms) 0.40 1.70

128-points 163,968 (5.47ms) 168,678 (2.81ms) 0.50 1.60

256-points 273,536 (9.12ms) 281,350 (4.69ms) 0.60 2.70

128-point
128-points 429,026 (14.30ms) 441,458 (7.36ms) 0.40 2.30

256-points 644,074 (21.47ms) 662,677 (11.04ms) 0.40 2.00

256-point 256-points 1,701,554 (56.72ms) 1,750,962 (29.18ms) 0.50 3.10
22

32076A–AVR32–11/07

AVR32718

AVR32718
*: Impulse Response.

Table 2.2.2 - Benchmark of 32-bit Convolution: avr32-uc3 optimized

1st input signal 2nd input signal

Execution time (cycles)

Error

Amplitude average

(x10-9)

Max. amplitude

(x10-9)

wait-state

0 at 30MHz 1 at 60MHz

32-point 32-points 13,361 (445.4us) 13,680 (228.0us) 0.60 2.30

64-points 19,958 (665.3us) 20,414 (340.2us) 0.50 2.10

128-points 33,142 (1.10ms) 33,872 (564.5us) 0.50 1.90

256-points 59,510 (1.98ms) 60,784 (1.01ms) 0.50 2.10

64-point 64-points 50,501 (1.68ms) 51,624 (860.4us) 0.50 1.70

128-points 75,722 (2.52ms) 77,376 (1.29ms) 0.60 2.40

256-points 126,154 (4.21ms) 128,864 (2.15ms) 0.70 2.70

128-point 128-points 196,972 (6.57ms) 201,244 (3.35ms) 0.50 2.30

256-points 295,540 (9.85ms) 301,887 (5.03ms) 0.60 2.30

256-point 256-points 778,684 (25.96ms) 795,388 (13.26ms) 0.60 3.10

Table 3.1.1 - Benchmark of 16-bit FIR Filter: generic

 N
u

m
b

e
r

o
f

T
a

p
s

I.R.* in SRAM (cycles) I.R.* in FLASH (cycles)

Error

Amplitude

average

(x10-5)

Max.

amplitude

(x10-5)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point
24 7,424 (247.5us) 7,682 (128.0us) 10,704 (356.8us) 12,352 (205.9us) 2.27 9.46

48 5,780 (192.7us) 5,996 (99.9us) 8,517 (283.9us) 9,868 (164.5us) 3.09 15.57

256-point

24 41,793 (1.39ms) 43,202 (720.0us) 60,433 (2.01ms) 69,760 (1.16ms) 2.22 9.46

48 70,101 (2.34ms) 72,620 (1.21ms) 103,750 (3.46ms) 120,268 (2.00ms) 5.66 27.20

72 90,921 (3.03ms) 94,262 (1.57ms) 135,691 (4.52ms) 157,528 (2.63ms) 11.25 52.65

100 105,127 (3.50ms) 108,903 (1.82ms) 156,466 (5.22ms) 185,989 (3.10ms) 14.19 63.71

512-point

24 87,617 (2.92ms) 90,562 (1.51ms) 126,737 (4.22ms) 146,304 (2.44ms) 2.23 9.46

48 155,861 (5.20ms) 161,452 (2.69ms) 230,726 (7.69ms) 267,468 (4.46ms) 5.78 27.20

72 216,617 (7.22ms) 224,566 (3.74ms) 323,339 (10.78ms) 375,384 (6.26ms) 10.79 52.65

100 276,391 (9.21ms) 286,311 (4.77ms) 411,442 (13.71ms) 489,093 (8.15ms) 14.05 63.71

1024-point

24 179,265 (5.98ms) 185,282 (3.09ms) 259,345 (8.64ms) 299,392 (4.99ms) 2.21 9.46

48 327,381 (10.91ms) 339,116 (5.65ms) 484,678 (16.16ms) 561,868 (9.36ms) 5.85 27.20

72 468,009 (15.60ms) 485,174 (8.09ms) 698,635 (23.29ms) 811,096 (13.52ms) 10.69 52.65

100 618,919 (20.63ms) 641,127 (10.69ms) 921,394 (30.71ms)
1,095,301

(18.26ms)
13.99 63.71
23

32076A–AVR32–11/07

*: Impulse Response.

*: Impulse Response.

Table 3.1.2 - Benchmark of 16-bit FIR Filter: avr32-uc3 optimized

N
u

m
b

e
r

o
f

T
a

p
s

I.R.* in SRAM (cycles) I.R.* in FLASH (cycles)

Error

Amplitude

average

(x10-5)

Max.

amplitude

(x10-5)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point
24 2,439 (81.3us) 2,657 (44.3us) 2,703 (90.1us) 3,054 (50.9us) 2.27 9.46

48 2,115 (70.5us) 2,309 (38.5us) 2,355 (78.5us) 2,670 (44.5us) 3.09 15.57

256-point

24 12,712 (423.7us) 13,841 (230.7us) 14,128 (470.9us) 15,966 (266.1us) 2.22 9.46

48 21,604 (720.1us) 23,573 (392.9us) 24,148 (804.9us) 27,390 (456.5us) 5.66 27.20

72 28,192 (939.7us) 30,785 (513.1us) 31,576 (1.05ms) 35,862 (597.7us) 11.25 52.65

100 32,966 (1.10ms) 36,014 (600.2us) 36,966 (1.23ms) 42,015 (700.3us) 14.19 63.71

512-point

24 26,408 (880.3us) 28,753 (479.2us) 29,360 (978.7us) 33,182 (553.0us) 2.23 9.46

48 47,588 (1.59ms) 51,925 (865.4us) 53,204 (1.77ms) 60,350 (1.01ms) 5.78 27.20

72 66,464 (2.22ms) 72,577 (1.21ms) 74,456 (2.48ms) 84,566 (1.41ms) 10.79 52.65

100 85,574 (2.85ms) 93,486 (1.56ms) 95,974 (3.20ms) 109,087 (1.82ms) 14.05 63.71

1024-point

24 53,800 (1.79ms) 58,577 (976.3us) 59,824 (1.99ms) 67,614 (1.13ms) 2.21 9.46

48 99,556 (3.32ms) 108,629 (1.81ms) 111,316 (3.71ms) 126,270 (2.10ms) 5.85 27.20

72 143,008 (4.77ms) 156,161 (2.60ms) 160,216 (5.34ms) 181,974 (3.03ms) 10.69 52.65

100 190,790 (6.36ms) 208,430 (3.47ms) 213,990 (7.13ms) 243,231 (4.05ms) 13.99 63.71

Table 3.2.1 - Benchmark of 32-bit FIR Filter: generic

N
u

m
b

e
r

o
f

T
a

p
s

I.R.* in SRAM (cycles) I.R.* in FLASH (cycles)

Error

Amplitude

average

(x10-9)

Max.

amplitude

(x10-9)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point
24 13,984 (466.1us) 14,365 (239.4us) 16,608 (553.6us) 18,624 (310.4us) 2.10 12.40

48 11,101 (370.0us) 11,419 (190.3us) 13,311 (443.7us) 14,865 (247.8us) 2.50 14.40

256-point

24 79,073 (2.64ms) 81,181 (1.35ms) 93,985 (3.13ms) 105,408 (1.76ms) 2.30 17.40

48 135,518 (4.52ms) 139,291 (2.32ms) 162,688 (5.42ms) 181,713 (3.03ms) 2.70 16.60

72 177,131 (5.90ms) 182,137 (3.04ms) 213,391 (7.11ms) 238,002 (3.97ms) 4.60 31.50

100 187,238 (6.24ms) 194,313 (3.24ms) 241,717 (8.06ms) 264,808 (4.41ms) 4.60 31.90

512-point

24 165,857 (5.53ms) 170,269 (2.84ms) 197,153 (6.57ms) 221,120 (3.69ms) 2.60 23.10

48 301,406 (10.05ms) 309,787 (5.16ms) 361,856 (12.06ms) 404,177 (6.74ms) 3.20 23.90

72 422,123 (14.07ms) 434,041 (7.23ms) 508,559 (16.95ms) 567,218 (9.45ms) 5.10 35.30

100 492,390 (16.41ms) 510,985 (8.52ms) 635,701 (21.19ms) 696,424 (11.61ms) 5.10 31.90

1024-point

24 339,425 (11.31ms) 348,445 (5.81ms) 403,489 (13.45ms) 452,544 (7.54ms) 3.70 28.40

48 633,182 (21.11ms) 650,779 (10.85ms) 760,192 (25.34ms) 849,105 (14.15ms) 4.60 29.30

72 912,107 (30.40ms) 937,849 (15.63ms)
1,098,895

(36.63ms)

1,225,650

(20.43ms)
6.50 35.30

100
1,102,694

(36.76ms)

1,144,329

(19.07ms)

1,423,669

(47.46ms)

1,559,656

(26.00ms)
6.40 33.30
24

32076A–AVR32–11/07

AVR32718

AVR32718
*: Impulse Response.

Table 3.2.2 - Benchmark of 32-bit FIR Filter: avr32-uc3 optimized

 N
u

m
b

e
r

o
f

T
a

p
s

I.R.* in SRAM (cycles) I.R.* in FLASH (cycles)

Error

Amplitude

average

(x10-9)

Max.

amplitude

(x10-9)

wait-state wait-state

0 at 30MHz 1 at 60MHz 0 at 30MHz 1 at 60MHz

64-point
24 6,479 (216.0us) 6,613 (110.2us) 9,141 (304.7us) 10,918 (182.0us) 2.10 12.40

48 5,132 (171.1us) 5,245 (87.4us) 7,305 (243.5us) 8,866 (147.8us) 2.50 14.40

256-point

24 36,432 (1.21ms) 37,140 (619.0us) 51,574 (1.72ms) 61,605 (1.03ms) 2.30 12.40

48 62,157 (2.07ms) 63,420 (1.06ms) 88,906 (2.96ms) 107,937 (1.80ms) 2.70 16.60

72 81,114 (2.70ms) 82,788 (1.38ms) 116,446 (3.88ms) 142,173 (2.37ms) 4.60 31.50

100 94,441 (3.15ms) 96,490 (1.61ms) 140,910 (4.70ms) 166,671 (2.78ms) 4.60 31.90

512-point

24 76,368 (2.55ms) 77,844 (1.30ms) 108,150 (3.61ms) 129,189 (2.15ms) 2.60 23.10

48 138,189 (4.61ms) 140,988 (2.35ms) 197,706 (6.59ms) 240,033 (4.00ms) 3.20 23.90

72 193,242 (6.44ms) 197,220 (3.29ms) 277,470 (9.25ms) 338,781 (5.65ms) 5.10 35.30

100 248,297 (8.28ms) 253,674 (4.23ms) 370,542 (12.35ms) 438,287 (7.30ms) 5.10 31.90

1024-point

24 156,240 (5.21ms) 159,252 (2.65ms) 221,302 (7.38ms) 264,357 (4.41ms) 3.70 28.40

48 290,253 (9.68ms) 296,124 (4.94ms) 415,306 (13.84ms) 504,225 (8.40ms) 4.50 29.30

72 417,498 (13.92ms) 426,084 (7.10ms) 599,518 (19.99ms) 731,997 (12.20ms) 6.50 35.30

100 556,009 (18.53ms) 568,042 (9.47ms) 829,806 (27.66ms) 981,519 (16.36ms) 6.40 33.30
25

32076A–AVR32–11/07

Table 4.1.1 - Benchmark of 16-bit FIR Filter: generic

O
rd

e
r

o
f

th
e

 f
il

te
r

Execution time (cycles)

Error

Amplitude average

(x10-5)

Max. amplitude

(x10-5)

wait-state

0 at 30MHz 1 at 60MHz

72-point

2 5,294 (176.5us) 5,717 (95.3us) 1.50 4.00

7 11,469 (382.3us) 12,802 (213.4us) 1.40 4.30

12 16,319 (544.0us) 18,387 (306.5us) 2.50 7.60

256-point

2 19,096 (636.5us) 20,621 (343.7us) 1.50 4.00

7 44,591 (1.49ms) 49,786 (829.8us) 1.40 4.30

12 68,761 (2.29ms) 77,451 (1.29ms) 3.50 8.90

512-point

2 38,296 (1.28ms) 41,357 (689.3us) 1.50 4.00

7 90,671 (3.02ms) 101,242 (1.69ms) 1.40 4.30

12 141,721 (4.72ms) 159,627 (2.66ms) 3.70 8.90

1024-point

2 76,696 (2.56ms) 82,829 (1.38ms) 1.50 4.00

7 182,831 (6.09ms) 204,154 (3.40ms) 1.40 4.30

12 287,641 (9.59ms) 323,979 (5.40ms) 3.90 8.90

Table 4.1.2 - Benchmark of 16-bit FIR Filter: avr32-uc3 optimized

O
rd

e
r

o
f

th
e

 f
il

te
r

Execution time (cycles)

Error

Amplitude average

(x10-5)

Max. amplitude

(x10-5)

wait-state

0 at 30MHz 1 at 60MHz

72-point

2 2,725 (90.8us) 2,871 (47.9us) 1.20 4.00

7 4,332 (144.4us) 4,682 (78.0us) 1.90 6.90

12 6,089 (203.0us) 6,534 (108.9us) 3.30 8.40

256-point

2 9,167 (305.6us) 9,633 (160.6us) 1.10 4.00

7 15,006 (500.2us) 16,228 (270.5us) 1.70 6.90

12 22,283 (742.8us) 23,876 (397.9us) 5.10 12.40

512-point

2 18,127 (604.2us) 19,041 (317.4us) 1.10 4.00

7 29,854 (995.1us) 32,292 (538.2us) 1.70 6.90

12 44,811 (1.49ms) 48,004 (800.1us) 5.60 12.40

1024-point

2 36,047 (1.20ms) 37,857 (631.0us) 1.10 4.00

7 59,550 (1.99ms) 64,420 (1.07ms) 1.70 6.90

12 89,867 (3.00ms) 96,260 (1.60ms) 5.80 12.40
26

32076A–AVR32–11/07

AVR32718

AVR32718
Table 4.2.2 - Benchmark of 32-bit FIR Filter: generic

 O
rd

e
r

o
f

th
e

 f
il

te
r

Execution time (cycles)

Error

Amplitude average

(x10-9)

Max. amplitude

(x10-9)

wait-state

0 at 30MHz 1 at 60MHz

72-point

2 7,582 (252.7us) 8,072 (134.5us) 1.00 3.80

7 14,517 (483.9us) 15,922 (265.4us) 1.50 7.00

12 19,952 (665.1us) 22,097 (368.3us) 2.60 10.30

256-point

2 27,456 (915.2us) 29,232 (487.2us) 0.80 3.80

7 56,471 (1.88ms) 61,922 (1.03ms) 1.50 7.00

12 83,986 (2.80ms) 92,937 (1.55ms) 1.50 10.30

512-point

2 55,104 (1.84ms) 58,672 (977.9us) 0.80 3.80

7 114,839 (3.83ms) 125,922 (2.10ms) 1.50 7.00

12 173,074 (5.77ms) 191,497 (3.19ms) 1.40 10.30

1024-point

2 110,400 (3.68ms) 117,552 (1.96ms) 0.80 3.80

7 231,575 (7.72ms) 253,922 (4.23ms) 1.50 7.00

12 351,250 (11.71ms) 388,617 (6.48ms) 1.30 10.30

Table 4.2.1 - Benchmark of 32-bit FIR Filter: avr32-uc3 optimized

O
rd

e
r

o
f

th
e

 f
il

te
r

Execution time (cycles)

Error

Amplitude average

(x10-9)

Max. amplitude

(x10-9)

wait-state

0 at 30MHz 1 at 60MHz

72-point

2 5,297 (176.6us) 5,662 (94.4us) 1.00 3.80

7 8,859 (295.3us) 9,233 (153.9us) 1.50 7.00

12 11,670 (389.0us) 12,239 (204.0us) 3.00 10.30

256-point

2 18,731 (624.4us) 20,014 (333.6us) 0.80 3.80

7 33,333 (1.11ms) 34,625 (577.1us) 1.50 7.00

12 46,816 (1.56ms) 48,855 (814.3us) 1.80 10.30

512-point

2 37,419 (1.25ms) 39,982 (666.4us) 0.80 3.80

7 67,381 (2.25ms) 69,953 (1.17ms) 1.60 7.00

12 95,712 (3.19ms) 99,799 (1.66ms) 1.70 10.30

1024-point

2 74,795 (2.49ms) 79,918 (1.33ms) 0.80 3.80

7 135,477 (4.52ms) 140,609 (2.34ms) 1.60 7.00

12 193,504 (6.45ms) 201,687 (3.36ms) 1.60 10.30
27

32076A–AVR32–11/07

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

Enter Product Line E-mail

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-

marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
32076A–AVR32–11/07

	1. Introduction
	1.1 References

	2. Radix-4 decimate in time complex FFT
	2.1 Description
	2.1.1 Arguments
	2.1.2 Algorithm
	2.1.3 Notes

	2.2 Benchmark
	2.2.1 Benchmark routine
	2.2.2 Result
	2.2.2.1 16-bit radix-4 D.I.T. complex FFT: generic
	2.2.2.2 16-bit radix-4 D.I.T. complex FFT: avr32-uc3 optimized
	2.2.2.3 32-bit radix-4 D.I.T. complex FFT: generic

	3. Convolution
	3.1 Description
	3.1.1 Function prototype
	3.1.2 Arguments
	3.1.3 Requirements
	3.1.4 Algorithm
	3.1.5 Notes

	3.2 Benchmark
	3.2.1 Benchmark routine
	3.2.2 Result
	3.2.2.1 16-bit Convolution: generic
	3.2.2.2 16-bit Convolution: avr32-uc3 optimized
	3.2.2.3 32-bit Convolution: generic
	3.2.2.4 32-bit Convolution: avr32-uc3 optimized

	4. FIR Filter (alias Partial Convolution)
	4.1 Description
	4.1.1 Function prototype
	4.1.2 Arguments
	4.1.3 Requirements
	4.1.4 Algorithm
	4.1.5 Notes

	4.2 Benchmark
	4.2.1 Benchmark routine
	4.2.2 Result
	4.2.2.1 16-bit FIR filter: generic
	4.2.2.2 16-bit FIR filter: avr32-uc3 optimized
	4.2.2.3 32-bit FIR filter: generic
	4.2.2.4 32-bit FIR filter: avr32-uc3 optimized

	5. Partial IIR Filter
	5.1 Description
	5.1.1 Function prototype
	5.1.2 Arguments
	5.1.3 Algorithm
	5.1.4 Notes

	5.2 Benchmark
	5.2.1 Benchmark routine
	5.2.2 Result
	5.2.2.1 16-bit IIR filter: generic
	5.2.2.2 16-bit IIR filter: avr32-uc3 optimized
	5.2.2.3 32-bit IIR filter: generic
	5.2.2.4 32-bit IIR filter: avr32-uc3 optimized

	6. Annexes

